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Abstract

In recent years, large neural networks for nat-
ural language generation (NLG) have made
leaps and bounds in their ability to generate
fluent text. However, the tasks of evaluating
quality differences between NLG systems and
understanding how humans perceive the gener-
ated text remain both crucial and difficult. In
this system demonstration, we present Real or
Fake Text (RoFT), a website that tackles both
of these challenges by inviting users to try their
hand at detecting machine-generated text in a
variety of domains. We introduce a novel eval-
uation task based on detecting the boundary
at which a text passage that starts off human-
written transitions to being machine-generated.
We show preliminary results of using RoFT to
evaluate detection of machine-generated news
articles.

1 Introduction

Despite considerable advancements in building nat-
ural language generation (NLG) systems that can
output extremely fluent English text, there is still
not very much understanding of how humans per-
ceive machine-generated text. Such an understand-
ing is crucial for the evaluation of the improve-
ments in NLG systems and for the analysis of the
societal ramifications of machine-generated text as
it becomes increasingly easy to produce.

When evaluating NLG systems, it is considered
standard practice to ask evaluators to rate generated
text on criteria such as fluency, naturalness, or rel-
evance to a prompt on a Likert scale (van der Lee
et al., 2019). Preference studies, where a rater is
shown two generated excerpts and asked which one
they prefer, are also common. Some recent work
has focused on the detection problem: how capable
humans are at distinguishing textual excerpts gen-
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Figure 1: A word cloud of common words that annota-
tors used to describe why they thought sentences were
machine-generated.

erated by a system from those written by another
human (Ippolito et al., 2020; Zellers et al., 2019).

However, due to the prohibitive cost of running
human evaluation studies, most prior work in this
area has been rather limited in scope. For example,
analyses usually show results on only a single cate-
gory of text (news articles, stories, webtext, etc.).
This could be problematic since different domains
have different levels of named entities, world facts,
narrative coherence, and other properties that im-
pact the success of NLG systems. In addition, most
papers only evaluate on a very limited selection of
decoding strategy hyperparameters. Holtzman et al.
(2019) and Ippolito et al. (2020) both show that
the decoding strategy chosen at inference time can
have a significant impact on the quality of gener-
ated text.

In this work, we introduce the Real or Fake Text
(RoFT) system, a novel application for simultane-
ously collecting quality annotations of machine-
generated text while allowing the public to as-
sess and improve their skill at detecting machine-
generated text.



In RoFT, we propose to use the task of detect-
ing when text is machine-generated as a quality
criterion for comparing NLG systems. Following
Ippolito et al. (2020), we make the counterintuitive
assumption that the worse annotators are at detect-
ing that text is machine-generated, the better we
can say that the NLG system is at generating text.

In RoFT’s detection task, annotators are shown a
passage of text one sentence at a time. The first sev-
eral sentences are from a real human-written text
source and the next several sentences are a machine-
generated continuation. The user’s goal is to guess
where the boundary is. When they think that a sen-
tence is machine-generated, they are asked to give
an explanation for their choice. Afterwards the true
boundary is revealed.

In the remainder of this paper, we discuss why
we think this task is interesting from a research per-
spective and describe the technical details behind
our implementation. We show preliminary results
that showcase the types of analyses that are possi-
ble with the collected data, and finally we discuss
plans for future work.

The RoFT website is located at http://www.

roft.io/. The source code is available un-
der an MIT License at https://github.com/

kirubarajan/roft.

2 Research Motivations

The purpose behind RoFT is to collect annotations
on the scale needed to probe the quality of text
generated under a variety of NLG conditions and
systems. In this section, we describe three research
questions we aim to answer using RoFT data.

2.1 Length Threshold for Detection

State-of-the-art generative models tend to produce
text that is locally fluent but lacking in long-term
structure or coherence. Intuition suggests that flu-
ent NLG systems ought to produce text that is high
quality for long durations (measured in number of
sentences). As such, we are interested in using the
the boundary detection task—whether annotators
can detect the boundary between human-written
text and a machine-generated continuation—as a
comparison method for NLG systems. We hypoth-
esize that for better quality systems, the generated
text will be able to fool humans for more sentences.

2.2 Text Genre/Style

Generative language models have now been trained
and fine-tuned on a great diversity of genres and
styles of text, from Reddit posts (Keskar et al.,
2019) and short stories (Fan et al., 2018) to
Wikipedia (Liu et al., 2018) and news articles
(Zellers et al., 2019). Each of these datasets has
its own distinct challenges for generation; for ex-
ample, in the story domain it is acceptable for a
generator to make up facts while this would be un-
acceptable in a Wikipedia article. We are interested
in how these differences might impact the ability
of humans to detect machine-generated text.

2.3 Reasons Text is Low Quality

A study by van der Lee et al. (2019) found that
less than 3% of recent papers on NLG ask for free-
text comments when performing human evalua-
tions. And yet, understanding why humans think
text is low quality can be very important for diag-
nosing problems in NLG systems (Reiter and Belz,
2009). Therefore, the RoFT platform collects free-
form textual explanations from our annotators on
their decisions. Such data, though inevitably noisy,
could provide insights into the types of errors that
NLG systems introduce, the types of errors humans
are sensitive to, and even the types of errors human-
written corpora contain (when a rater inadvertently
predicts that a human-written sentence is machine-
generated).

2.4 Human Factor

The boundary detection task posed by RoFT is an
artificial one. We do not expect that real-world
uses of machine-generated text would involve such
a tidy split of prompt sentences followed by a
machine-generated continuation. However, we be-
lieve that even an artificial framing such as RoFT’s
has both the potential to educate the public on what
to look for in machine-generated text and give re-
searchers insights into how humans perceive and
react to such text. We are particularly interested
in how annotators may or may not improve over
time and in what ways their respective demograph-
ics (for example, paid crowd worker vs. university
student) impact their detection skill.

3 System Overview

This section gives an overview of RoFT’s design,
including the task that annotators are asked to com-
plete and methods for encouraging organic traffic.

http://www.roft.io/
http://www.roft.io/
https://github.com/kirubarajan/roft
https://github.com/kirubarajan/roft


3.1 Task Definition

The RoFT annotation task is posed as a game.
Users first choose which category they would like
to play in (where different categories correspond
to different text domains or NLG systems). The
“game” then consists of a series of rounds. Each
round starts with the user being presented a single
sentence that is guaranteed to be human-written.
For example, this might be the first sentence of a
New York Times article. Afterwards, users may
select to display more sentences, one at a time. At
each step, they must decide if they believe that the
most recent sentence is still written by a human.
When the user decides they are confident that a ma-
chine has written the most recent sentence (i.e. they
have found the “boundary sentence”), the round
ends. The user is then asked to provide a natural
language explanation of what prompted their deci-
sion. In essence, the annotators’ goal is to identify
the exact sentence where a machine “takes over”
and the text is no longer human-written. Figure 2
gives screenshots of the flow of a single round.

3.2 Implementation

The RoFT annotation website is designed to col-
lect data needed to answer a variety of research
questions, including those posed in Section 2. In
particular, our system stores detailed metadata for
each annotation. These include the order in which
a user completed annotations, the type of user ac-
count associated with each annotation (e.g. paid
worker or organic traffic), the NLG system used to
produce each generation, and the amount of time
each annotation took. The system was developed
in Python using the Django Framework and a SQL
database. The use of a relational database enables
sophisticated queries to be made on the collected
annotations for analysis. We plan to make dumps
of the database available to other researchers to
further promote research into the evaluation of gen-
erated text.

3.3 Gamification

Since the cost of collecting human annotations via
a crowd platform such as Amazon Mechanical Turk
can be prohibitively expensive for large studies, we
aimed to build the RoFT website in a manner that
would encourage sustained participation without
the need for a financial incentive.

Each user has a Profile page (shown in Figure 3)
where they can see statistics on the total number of

(a) The user is shown an initial sentence and then one sentence of continuation 
at a time. At each step, the user decides if the latest sentence is human-written 
or machine-generated and presses the appropriate button.

(b) When the user decides that the most recent sentence is machine-generated, 
they are asked to provide an explanation for their decision.

(c) The true boundary is then revealed. In this case, the user would be alerted 
that they received 5 points since they guessed the boundary correctly.

Figure 2: The user interface for annotation.



Figure 3: A user’s profile page.

annotations they have done, how many points they
have earned, and how many questions they have an-
swered perfectly. There is also a leaderboard where
users can check how their point count compares to
other raters. The leaderboard encourages users to
do more annotations, since this is the only way to
move up on the rankings.

We received unsolicited compliments from our
initial annotators such as “Interesting, fun task” and
“Really convincing passages.” We intend to add fur-
ther gamification elements, including leaderboards
broken down by text domain, comprehensive statis-
tics on user progress and skill, and the ability to see
and up-vote the free-text comments of other users.

3.4 Generations

We ultimately plan to use RoFT to study differences
in detection performance across a variety of NLG
systems and text domains. The initial version of
RoFT includes two complementary categories of
text: news and fictional stories. Users have the
option to choose which category they would like to
annotate.

For the news category, prompts are drawn from
the New York Times Annotated Corpus (Sandhaus,
2008) and are truncated to between 1 and 10 sen-
tences long. GROVER (Zellers et al., 2019) is then
conditioned on these starting sentences and asked
to complete the article. Finally, the outputs from
GROVER are truncated so that the sum total num-
ber of sentences for each example is 10.

The data on fictional stories was prepared simi-
larly except that the Reddit Writing Prompts dataset
(Fan et al., 2018) was used for the prompts, and the
GPT-2 XL model (Radford et al., 2019) was used
for generation.

Each category contains over 1,500 examples,
where for each example the number of human-
written context sentences as well as the values of
the decoding strategy hyperparameters were cho-
sen randomly. For our initial seeding of data, Nu-
cleus sampling (Holtzman et al., 2019) was used for
all decoding, where the p hyperparameter, which
controls the diversity of the generated text, was
randomly selected to be anywhere from p = 0
(argmax) to p = 1.0 (full random sampling).

4 Case Study

To show the efficacy of RoFT as an evaluation
tool, we present a case study from our initial pilot
of over 3000 annotations of generations from the
news article domain.

4.1 Data Collection

While our eventual hope is for the RoFT website
to have enough organic traffic for useful data to be
collected, for the purposes of this study, two hun-
dred Amazon Mechanical Turk workers were paid
to complete 10 annotations each on the website.
In total, we collected 3244 annotations (7.9% of
annotators continued past the minimum of 10 ques-
tions they were required to do to get paid). 10% of
examples the crowd workers saw were designated
attention check questions in which the prompt ex-
plicitly stated they should select “human-written”
at every step. About 25% of crowd workers failed
this check, and after filtering out these annotators,
we were left with a total of 1848 high-quality an-
notations, which we will refer to as the filtered
annotation set.

4.2 Inter-Annotator Agreement

There were 768 examples which had at least two
crowd workers provide annotations for them (645
of which had at least three annotations provided).
This led to 6,115 instances of pairs of annota-
tions on the same examples. Of these, 18.3% pre-
dicted the exact same sentence as the boundary,
and 28.4%, predicted boundaries at most one sen-
tence apart from each other. When considering
only the filtered annotation set, there were 2,064
pairs of annotations. Of these, 18.6% predicted the
exact same sentence as the boundary, and 28.3%
predicted boundaries at most one sentence apart
from each other.



Figure 4: A histogram of the filtered annotation set
grouped by the distance (in number of sentences) be-
tween the sentence selected by the annotator and the
true boundary sentence.

4.3 Evaluation Measures
We consider three methods for evaluating annotator
ability.

4.3.1 Accuracy
Among annotators that passed our attention check,
15.8% of the filtered annotations correctly identi-
fied the exact boundary between machine and gen-
erated text. Additionally, the average annotation
from our filtered set was 1.989 sentences after the
true boundary. This is consistent with our intuition,
namely that current state-of-the-art NLG systems
are capable of fooling humans but typically only
for one or two sentences.

4.3.2 Distance from Boundary
In Figure 4, we show a histogram of our filtered
annotation set grouped by the distance each anno-
tation was away from the true boundary.1 If anno-
tators are selecting sentences at random, we would
expect this distribution to be symmetric about 0.
However, the observed distribution is significantly
asymmetric, with the left tail (composed of anno-
tators picking human-written sentences) dropping
off precipitously while the right tail (composed
of machine-generated sentences) decreases more
linearly. This asymmetry indicates that our anno-
tators are successfully picking up on clues in the

1As a note, values closer to zero in our histogram are more
likely by construction as there are more opportunities for these
distances to be selected. For example, a distance of -9 is
only possible if the generation boundary is at the 10th sen-
tence, while a distance of 0 is possible in every configuration.
This does not affect our expectation that the distribution be
symmetric if annotators are selecting at random.

generated text, and thus the sentence-by-sentence
structure of the RoFT experiment is an effective
way to evaluate text. These preliminary results
bode well for future large-scale use of the tool.

4.3.3 Points Awarded
While accuracy may be a simple and intuitive met-
ric for assessing performance, it is sub-optimal for
our purposes as it does not give partial credit for
guesses that are after the boundary, despite such
guesses being successful identifications of gener-
ated text. Average distance (in sentences) from
boundary is not sufficient either, as it does not
weight all guesses before the boundary equally neg-
atively and thus over-penalizes too-early annota-
tions on examples with late-occurring boundaries.

To combat these issues, we developed a point
system to better capture annotator ability. After
each annotation, a user is assigned points based on
their performance: 5 points for guessing exactly on
the boundary and a linearly decreasing number of
points for each sentence beyond the boundary. No
points are awarded for guesses that appear before
the boundary. We use the average points per anno-
tation as our metric for the experiments shown in
Figure 5.

4.4 Skill Range of Annotators

There was a significant range in detection ability
across the crowd workers. The top 5% of the fil-
tered worker pool earned an average of 3.34 points
per annotations while the bottom 5% earned an av-
erage of 0.35. Since it is difficult to separate out the
influence of inherent skill from that of misaligned
incentives (AMT workers were paid for comple-
tion, not correctness), more research is necessary
to understand differences in annotator ability.

4.5 Impact of Decoding Strategy

During our small-scale case study, we did not see
a noticeable correlation between the values of the
Nucleus Sampling (Holtzman et al., 2019) hyper-
parameter p and the detection accuracy of humans
as reported in Figure 5b. This is likely due to the
low number of annotations per value of p (n=180)
and we hope to run a more comprehensive version
of this experiment with more data in the future.

4.6 Impact of Revealing the Boundary

As part of the gamification aspect of the RoFT plat-
form, we reveal the true boundary to our annotators
after every annotation they complete. This feature
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Figure 5: In (a) we show the average number of points (Section 4.3) received per annotation in the filtered annota-
tion set grouped by the temporal order in which they were shown to the annotators 0 (first) to 9 (last). In (b) we
show average number of points received per item in the filtered annotation for each values of p used for decoding.
Error bars are standard deviation. No statistically significant trends were observed in this preliminary study.

adds a level of interactivity to the process and is
crucial for ensuring that the RoFT experiment is
enjoyable and appeals to the general public. To bet-
ter understand how this decision affected annotator
skill, we analyzed if our annotators got more accu-
rate as they did more annotations. Figure 5a shows
that over a session of 10 annotations, annotators ex-
hibit little to no improvement at the annotation task
over time. Future studies using the RoFT platform
will further investigate if human annotators can be
trained to detect generated text over long periods
of time and multiple gameplay sessions.

4.7 Free-form Comments

Our proposed annotation system allows annotators
to provide a natural language explanation of why
they made a particular decision (e.g. classifying a
sentence as human-written or machine-generated).
Due to minimal oversight, many annotators re-used
or copy/pasted their comments across annotations.
Filtering for duplicates, we collected over 1200
unique comments, out of around 3000 annotations.
Manual inspection shows that many annotations re-
lied on similar clues such as: problems with entail-
ment, formatting (i.e. punctuation), and repetition.
These responses can be used to inform future im-
provements to existing NLG systems and decoding
strategies. Additionally, it is possible to use data
mining techniques to extract an error taxonomy
from the provided natural langauge description of
errors.

Sample Annotation

Seems like a conversational statement that doesnt logi-
cally follow from a book title reference

not relevant to preceding sentences

I don’t think that a human would write about tarot cards
in an obituary and it says obituaries plural.

The sentence is too short and simple, sweating
computerized.

First time I heard of dinosaur-eating mammals

The sentence is left hanging.

Repeated the second line again and To is written as TO

Table 1: Examples of explanations crowd workers
gave for why they thought a sentence was machine-
generated.

5 Related Work

Nearly all papers in NLG do some form of human
evaluation, usually using Amazon Mechanical Turk
(van der Lee et al., 2019). Typically the interfaces
for these evaluations are simple web forms. van der
Lee et al. (2019) offers a survey of many of these
methods. Custom-designed websites for collecting
or displaying human evaluations of generated text
have become increasingly prominent in the open-
ended dialog domain, with ChatEval (Sedoc et al.,
2019) and ConvAI (Pavlopoulos et al., 2019) being
two examples.

However, RoFT was primarily influenced by
other “real or fake” websites that attempt to
gamify the detection task, such as http://www.

http://www.whichfaceisreal.com/


whichfaceisreal.com/ for generated face im-
ages and https://faketrump.ai/ for generated
Tweets. Our task is similar to the one used for hu-
man evaluation in Ippolito et al. (2020), except in
their task the text shown to raters was either entirely
human-written or entirely machine-generated.

The boundary detection task we propose was
inspired by the Dialog Breakdown Detection Chal-
lenge (Higashinaka et al., 2016), in which the goal
is to automatically detect the first system utterance
in a conversation between a human and a chatbot
system that causes a dialogue breakdown.

6 Conclusion and Future Work

In this work, we have introduced RoFT and have
shown how it can be used to collect annotations
on how well human raters can tell when an arti-
cle transitions from being human-written to being
machine-generated.

Ultimately, we plan to use RoFT to conduct a
large-scale systematic study of the impact of de-
coding strategy, fine-tuning dataset, prompt genre,
and other factors on the detectability of machine-
generated text. We also intend to collect and release
a large dataset of natural language explanations for
why humans think text is machine-generated. We
hope that these will provide insights into problems
with the human-written text we use as prompts and
into the types of errors that NLG systems make.

Such a study will require tens of thousands of
human annotations. We hope that by gamifying the
annotation process and encouraging organic traffic
to the website, we can ultimately bypass the need
for crowd workers who, since they are paid by the
annotation, are disincentivized from taking the time
to provide high quality annotations.

We believe that RoFT provides a powerful tool
for understanding the strengths and limitations of a
great variety of NLG systems, and we look forward
to working with researchers interested in testing
out their own model outputs within the RoFT eval-
uation framework.
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