Cloud Chaser: Real Time Deep Learning Computer Vision on Low
Computing Power Devices

Zhengyi Luo, Austin Small, Liam Dugan, Stephen Lane
University of Pennsylvania

Abstract— Internet of Things(IoT) devices, mobile phones,
and robotic systems are often denied the power of deep learning
algorithms due to their limited computing power. However, to
provide time critical services such as emergency response, home
assistance, surveillance, etc, these devices often need real time
analysis of their camera data. This paper strives to offer a
viable approach to integrate high-performance deep learning
based computer vision algorithms with low-resource and low-
power devices by leveraging the computing power of the cloud.
By offloading the computation work to the cloud, no dedicated
hardware is needed to enable deep neural networks on existing
low computing power devices. A Raspberry Pi based robot,
Cloud Chaser, is built to demonstrate the power of using cloud
computing to perform real time vision tasks. Furthermore, to
reduce latency and improve real time performance, compression
algorithms are proposed and evaluated for streaming real-time
video frames to the cloud.

I. INTRODUCTION

With the growing success of deep learning in the field of
computer vision, it is natural for developers and researchers
alike to be interested in deploying these new vision al-
gorithms in devices such as smart home cameras, robots,
drones, etc. However, popular computer vision algorithms
that leverage deep neural nets often require high end GPUs
(Graphics Processing Units) to achieve desired performance.
This constraint heavily limits the number of algorithms
researchers can experiment with. To overcome this problem,
researchers have tried different approaches, such as designing
more efficient deep learning frameworks like MobileNet [1],
making computing add-on modules like Intel Movidius [2],
or creating dedicated chips and processors such as NeuPro
by CEVA [3]

The idea of using Cloud infrastructure to aid low re-
source devices, first introduced by James Kuffner [4], has
inspired a number of research projects [5] [6] [7]. As more
and more Cloud Computing services provide deep learning
frameworks, deep learning algorithms are becoming more
accessible, especially when GPU enabled cloud machines
provided by Amazon AWS, Google Cloud, Paperspace etc.
are offering substantial computing power at affordable prices.
Moreover, these cloud machines tend to have relatively high-
bandwidth networks, making them suitable for real-time
applications. For instance, the Nvidia Cloud Gaming [8]
service offers players who do not have access to high-end

Zhengyi Luo, Austin Small, and Liam Dugan are students of Depart-
ment of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104, U.S.A.

Email: {zhengyil, ausmall, ldugan,
shlane}@upenn.edu

GPUs the opportunity to run their games in the cloud and
render them on their personal devices. In this paper, we are
interested in using these resources to enable low resource
devices to run computationally intensive real-time computer
vision algorithms. Specifically, object detection is chosen as
the task for investigation.

As more and more internet of things, robotics, and mobile
devices become equipped with cameras, object detection
will be increasingly important as it is the foundation on
which higher level tasks such as navigation, planning, and
surveillance can be built. State of the art object detection
algorithms all heavily rely on powerful GPUs to achieve a
desirable accuracy and frame-rate. In order to achieve similar
performance in low computing power devices, we offload the
computing tasks to a GPU enabled cloud instance.

This paper makes the following contributions:

o Proposing a software architecture to allow resource
constrained devices to run state of the art deep learn-
ing object detection algorithms that require a GPU to
achieve real time performance.

« Utilizing multi-thread and asynchronous programming
to coordinate real-time video streaming and object de-
tection between cloud and local devices.

o Designing and evaluating compression algorithms to
reduce latency induced by offloading computing work
to the cloud.

The paper is organized as follows: section II reviews the
current research in the field of deep learning for object
detection and other efforts in running deep neural nets on
low resource devices. Section III describes the research
objective and problem formulations. Section IV gives the
system architecture, and Section V will describe our tech-
nical approach and methodology. System experiments and
performance analysis will be in section VI, while section
VII concludes the paper.

II. RELATED WORKS
A. Deep Learning Object Detection

Object Detection, different from image classification, is
the task of detecting possible objects in the current image
frame, as well as producing a bounding box that indicates
the location of the object. State of the art object detection
algorithms consists of two main approaches: region Based,
such Regional-based convolutional network (R-CNN) [9] and
Fast-RCNNs [10], and single-shot based You only look once
(YOLO) [11] and Single shot multibox Detector (SSD) [12].

For regional proposal based approaches, they often consist
of two steps: regional proposal and object classification. At
first, the potential objects’ locations (bounding box) in the
current scene are formulated, then a deep neural network
such as a Convolutional Neural Network (CNN) are used to
predict the objects’ classes. R-CNN, [9] was the first model
to adopt this procedure for object detection. R-CNN adapts
the selective search method proposed by [13], starting with
smaller regions in an image and then merging them gradually
based on their similarities. Once the regions are formed,
the image in the bounding box is fed into a Convolutional
Neural Network for classification. Fast R-CNN [10] speeds
up the R-CNN model by using a single network for the whole
image rather than dedicating a separate one to each region.
Faster R-CNN [14] brings in near real-time performance at
5 FPS frame rate on a GPU. However, the separation of the
object detection problem into both a regional proposal stage
and classification stage results in complicated pipelines that
significantly slow down the algorithm.

YOLO, a state of the art object detection algorithm that
was introduced in 2015, pioneered the approach to unify the
steps of regional proposal and object classification [15]. Due
to its simple and effective architecture, YOLO can achieve
comparable accuracy at more than 30 FPS. Since YOLO was
first released, several improvements in speed and accuracy
have since been realized in YOLOV2 [16] and YoloV3 [17].

The advent of these real time object detection algorithms
has encouraged numerous researchers to attempt to integrate
them into real-time systems. However, all of these algorithms
rely on powerful GPUs to achieve real-time performance.
For instance, to achieve real time performance, the YOLO
algorithm requires 4 GB of GPU Random-access memory
(RAM), which is only available on higher gaming PCs
and Laptops. On typical resource constraint devices such as
mobile phones and IoT devices, most of the time discrete
GPU is unavailable.

B. Real Time Computer Vision On Resource Constraint
Devices

Several Neural Network based approaches have been de-
vised to cater towards real time object detection on resource
constrained platforms. Many of these approaches either com-
press a pre-trained network like [18] and [19] or directly
train a small network such as [20] and [21]. For instance,
MobileNet proposes the use of depth-wise separable con-
volutions in order to reduce computation and model size
by reducing the complexity of the convolution operation
[1]. While these works do reduce space and computational
complexity, a significant trade off in accuracy is present.

With state of the art object detection unable to run in
real time on low resource platforms without compromising
on accuracy, an opportunity exists to offload the computing
workload to the cloud. Existing work attempts to measure
and contrast the performance of state of the art object
detection algorithms as it pertains to real time object tracking
with aerial drones [22]. While this work can act as a proof
of concept, practical concerns such as selection of communi-

cation protocols, image compression, and threading of tasks
on the mobile platform to minimize communication latency
all require significant investigation before cloud computing
becomes a viable mainstream solution for real time object
detection.

III. RESEARCH OBJECTIVE AND PROBLEM
FORMULATION

To enable deep learning based computer vision on resource
constrained devices, we leverage the computing power of the
cloud. Using the cloud as a secondary computing unit has
many advantages. First of all, cloud computing allows any
device with basic WiFi capabilities to run computationally
intensive deep learning neural networks. This is especially
useful as popular high performance vision libraries often
need a significant amount of GPU power to produce satisfy-
ing results. Another advantage is the fact that incorporating
a cloud computing component requires minimal additional
setup but can drastically improve the device’s capabilities.
The only hardware requirement for using cloud computing
in an existing device will be a reliable WiFi module.

Thus, our goal is to provide a way to integrate deep learn-
ing computer vision algorithms into low resource devices
with minimal effort using cloud technologies. We are assum-
ing the constraint of a computing unit that has the capability
of communicating through WiFi but has limited bandwidth
and little to no on-board computing power with which to
run highly parallel deep learning algorithms. To offload
real time computer vision tasks to the cloud, a low-latency
communication architecture is designed, implemented, and
tested. In order to test the performance of the system, we
have selected object detection tasks as the main objective
for this work.

IV. SYSTEM ARCHITECTURE

To enable offloading the heavy computation tasks to the
cloud, a novel architecture is proposed, as shown in Fig. 1.
The architecture consists of two main parts: the client side,
which resides on the mobile device and handles the image
data transmission, and the server side, which runs on the
cloud instance and executes the object detection algorithms.

1) Server Side : The server side is made of three main
components, the Asyncio Server, the Local Asyncio Re-
broadcast Server, and the Deep Learning Object Detector.

« Asyncio Server: runs two separate websocket servers for
communicating with the client. The first server receives
the incoming JPEG stream from the device, while the
second server reads the results from the object detector
and sends data to the client device.

e Local Asyncio Rebroadcast Server: receives the JPEG
stream from the Asyncio Server and rebroadcasts the
images using MJPEG protocol.

o Deep Learning Object Detector: analyzes the rebroad-
cast MJPEG frames, and uses YOLO-based deep learn-
ing object detection algorithms to recognize objects in
the current frame.

[|was]
i @ OpenCV Camera .
— Capture
A

Raw Camera
Footage

i # Local Compression |

¢ Compressed JPEG

Stream
| JPEG Images

(Websocket)

Local Asyncio MJPEG Stream

| Rebroadcast Server

Deep Learning
Object Detector

i g Asyncio Client
i l Object Detection |
(Low-power, Wifi Enabled Robot J

Object
Detection
(Websocket)

Action |

Fig. 1.

2) Client Side: The client side is made of four main
components, the OpenCV Camera Capture component, the
on device image compression component (Local Compres-
sion), the Asyncio Client component, and the device Action
component.

e OpenCV Camera Capture: uses OpenCV CvCapture
library to capture image output from the device camera.

e Local Compression: processes raw image data from
camera and compresses it to reduce file size, then
encodes the raw image data into JPEG images.

o Asyncio Client: runs two separate websocket clients and
communicates with the server. The first client sends the
image data to the server continuously, and the second
receives object detection data from the server.

o Action: reacts to the detected object in the scene.

3) Pipeline Workflow Overview: Our proposed pipeline
contains the above components and uses multiple threads
to ensure parallel execution. Each image frame captured
by OpenCV Camera Capture from the device camera is
compressed by Local Compression. Then the compressed
image is encoded in JPEG format and sent to the server by
the websocket through the Asyncio Client. After the cloud
Asyncio Server receives the image frame, it shares the image
with Local Asyncio Rebroadcast Server for rebroadcasting
the frame as a MJPEG stream. The Deep Learning Object
Detector accepts the image frames and detect the objects
in it. After detection is finished, the cloud Asyncio Server
reads it from the object detection algorithm, and sends the
detection as a string through websocket to the client. The
device Asyncio Client receives the object information and
sends it to the Action component for reaction.

| 'l Asyncio Server

e
|

Object Detection

. Pre-Configured, GPU Enabled Cloud VM
| for Deep Learning)

System Architecture

V. TECHNICAL APPROACH
A. Real Time Video Streaming and Compression

To stream real time video frames to the cloud from a local
device to the cloud for analysis, we propose the following
approaches to the corresponding challenges:

1) Communication Protocol: To enable real-time perfor-
mance, the communication protocol needs to be low level
enough that it introduces minimal latency. Specifically, we
chose websocket as our main communication protocol. An-
other option to ensure the lowest possible network latency
is raw TCP, but the direct use of TCP has limited speed
advantage. Websocket allows multiple connections to a single
server, and is easy to use in an existing web framework
like the python aiohttp library. Since websocket ensures
easy interfacing with the rest of the application, while also
providing a more secure interface for the streamed video
frames (WSS protocol encrypts streams using HTTPS) it was
the best choice for our use case.

2) Network Address Translation: In order to stream a
MJPEG video stream through the network, existing programs
usually set up a HTTP web server on local devices and access
the video stream through the device’s assigned IP address.
However, for security reasons, Internet of Things devices
and mobile devices are often assigned private IP addresses
that are unreachable from outside of the private network.
Naturally, a cloud machine is outside of the local network,
thus making traditional streaming schemes unusable for our
purposes.

Some users with administrative privileges on their routers
can circumvent this problem through enabling port forward-
ing, which is a router setting that allows a user to open
up specific ports on their routers to allow public access.

However, this approach is not possible on public networks
where common users do not have administrative privileges.
Additionally, some routers do not support port forwarding.

To make the device’s video stream accessible from the
cloud machine, as well as to avoid running a separate MJPEG
server on our device, our system proposes the following
solutions: instead of setting up a MJPEG server directly
on the device, camera frames captured from the device are
sent to the server via an established websocket connection
between server and device. Local devices, through not ac-
cessible from public networks, can establish bi-directional
websocket connections with the server. Thus, the client can
send video frames through the websocket directly to the
server, and the server can then rebroadcast the frames using
the MJPEG protocol, which is then consumed by object
detection algorithms.

3) Network Latency and Compression: Due to the limited
bandwidth of WiFi networks, we propose several compres-
sion approaches in order to reduce the size of the data
transmitted and reduce latency.

o Camera resolution: by reducing the camera capturing
resolution from 960 * 540 to 480 * 270, we cut down
the number of pixels transmitted by a factor of 4.

o Blurring the image: by applying a blur effect on the
image, we improve the JPEG compression algorithm’s
efficiency, and effectively cut down the data size trans-
mitted.

o Blacking out: by using the temporal data from the pre-
viously processed frame, we are able to identify known
objects and black out all regions of the image which do
not contain objects. This approach assumes that objects
do not change their relative position drastically between
frames, and by leaving a buffer region on the object
bounding box (15px margin), the detection algorithm
can still identify the existing objects in the new frame.
To detect new objects that may appear in the current
scene, a complete, not blacked out frame is periodi-
cally sent for detecting new objects. File size reduction
and latency reduction from the above approaches are
outlined in the experiment section.

B. Asynchronous and Multi-threaded Computing

In our architecture, the local device needs to send a
video stream continuously while receiving detection results
from previous frames. The cloud service also receives and
rebroadcasts each frame to localhost for deep learning object
detection algorithms. On top of that, the cloud needs to start
the object detection process on demand and read results
from the process. To achieve these goals, asynchronous
programming and multi-threading are heavily utilized in our
system.

On the cloud/server side, three different threads run in
parallel. One thread runs a websocket server for receiving
the video stream. Within this thread, the rebroadcast server
asynchronously broadcasts the video stream, exposing it
as a MJPEG stream on localhost. These two processes
communicate through shared variables. A second thread runs

a websocket server which starts the deep learning object
detector as the third thread. This websocket server then reads
the output from the deep learning object detector, and sends
it back to the client.

On the client/device side, three different threads are also
initiated to ensure parallel computing. The first thread runs
a websocket client dedicated to capturing, compressing, and
sending a continuous real-time video stream to the server.
The second thread also hosts a websocket client that receives
the object detection result from the server in a non-ending
loop. Finally, a third thread reads the information from the
second websocket thread, and reacts to the results from the
cloud object detector.

C. Deep Learning Object Detection

Deep learning based object detection algorithms have
gained significant traction due to their rapidly improving
performance on some of the most well-known image clas-
sification datasets such as ImageNet [23] and COCO [24].
For this work, we mainly focus on adapting the YOLO [15]
object detection algorithm to a cloud computing friendly
configuration, which is shown as the Deep Learning Object
Detector in Fig. 1.

Taking an input frame from the MJPEG stream provided
by the Local Asyncio Rebroadcast Server as shown in Fig. 1,
the image frame will go through the following calculations
to predict the current objects and their location in the scene.
The problem formulation is as follows.

1) Animage is broken up into an SxS grid of cells (S=7 in
our case), where each cell is responsible for producing
B (B = 5) bounding boxes. A bounding box represents
a potential object in the scene. If the center of an object
lies within a cell, that cell is responsible for generating
the object’s bounding box.

2) Each cell predicts the conditional probability
Pr(Class;|Object) which represents the probability
that the object in a grid cell is of Class;, given that
an object is present in the cell.

3) For each bounding box, five predictions, (x, y, w, h,
c) are produced, where (X, y) represents the center
of the predicted bounding box of an object, (w, h)
represents the width and height of the bounding box,
and c represents the confidence. The confidence score ¢
is calculated as formula (1), where ¢ represents object
class specific confidence in a bounding box, meaning
how likely a bounding box is to contain class i as well
as how well the bounding box fits the object.

¢ = Pr(Class;|Object) * Pr(Object) * IOU;:;‘;}L
= Pr(Class;) x IOU!h

pred
1
where IOU stands for Intersection over Union, which
is the area of overlap divided by the area of union
between the detected bounding box and the ground truth
bounding box.

| % xﬂx’
" 7 7 7
Layer Conn. Layer

Conv. Layers Conv. Layers
x1x256

asi2 1
1x

onv. Layers Conv. Layers Conn,
A
3x3x1024 3x3x1024

512 3x3x1024
3x3x1024 3x3x1024s2
xpo

Fig. 2. Neural Network Architecture for Deep Learning Object Detector

An image frame goes through a Convolutional Neural
Network (CNN) shown in Fig. 2 to predict the (x, y, w,
h, ¢) as formulated above. The neural network contains
24 convolutional layers and then 2 fully connected layers.
This network was inspired by GoogleLeNet model for image
classification [25]. Unlike GoogLeNet, 1 x 1 reduction layers
followed by 3 x 3 convolutional layers are used. The output
of the CNN is then fed into to the Asyncio Server, where it
will be transferred to the client.

For our application, the Deep Learning Object Detector is
trained on the Microsoft COCO [24] dataset, which contains
pictures of 80 objects. The object detector is run as a
subprocess of the server side program, as shown in Fig. 2,
and the output of the detector is framed as (X, y, ¢, w, h).
The confidence threshold is set at 50%. Essentially, for each
detected object in each frame that has a confidence greater
than 50%, the subprocess will output a text line giving its
prediction.

The advantage of using this construction lies in its speed
and accuracy. By unifying the step of regional proposal and
object classification, the final classification can be computed
by one pass of the network, making the algorithm applicable
to real-time applications with state of the art accuracy.
Combining the high performance of YOLO with our cloud
computing system, resource constrained devices can make
use of this object detection system with minimal additional
setup or hardware.

VI. EXPERIMENTS

Cloud Chaser [26], shown in Fig. 3. was built to demon-
strate the viability of our approach. It is our custom Rasp-
berry Pi based robot capable of following voice commands,
recognizing 80 different kinds of common objects in real
time, and tracking these objects in real-time (thus the name
”Cloud Chaser”).

Using Cloud Chaser, three sets of experiment are con-
ducted to demonstrate the viability of our approach. First,
the communication latency introduced by offloading critical
computation to the cloud is timed and calculated. Further, we
timed the compression algorithms that are intended to reduce
communication latency. Three compression algorithms are
considered: averaging the captured image without reducing
resolution, reducing captured image resolution, and blacking
out parts of the image that are considered “uninteresting’.

Fig. 3. Cloud Chaser and cloud based real time object detection. The right
image showcases a screenshot of real time objects being recognized from

the Paperspace cloud instance.

TIME FOR ROUND TRIP WEBSOCKET COMMUNICATION, DATA SIZE 26

TABLE 1

BYTES, TAKING THE AVERAGE OF 2000 ROUND TRIPS

Timing Difference

Sunnyvale to San
Francisco (41.5 mi)

Sunnyvale to New
York (2,937.8 mi)

TCP

0:00:00.023089

0:00:00.092086

Websocket

0:00:00.024619

0:00:00.094308

Last but not least, to demonstrate the adaptability of our plat-
form, an iOS app is developed to showcase our architecture
running on different devices.

A. Experiment Settings

Our cloud instance is configured as follows

e Oct Core Intel(R) Xeon(R) CPU E5-2623 v4 @
2.60GHz

e« 32 GB RAM

o Paperspace Network

o Nvidia Quadro P4000, 8GB Dedicated Video RAM

o Ubuntu 16.04.4 LTS

Cloud Chaser, our custom built robot shown in Fig. 3, has
the following specs:

e Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

« 1GB RAM

o« BCM43438 wireless LAN

o CSI camera port for connecting a Raspberry Pi camera
« Raspbian GNU/Linux 9.4 (stretch)

B. Real-Time Communication Latency

The latency induced by enabling our program can be bro-
ken into three parts: latency introduced by traveling through
physical space when sending packets, latency introduced by
limited bandwidth when sending data to cloud instance and
sending back prediction, and the time it took for YOLO to
process the image and produce prediction. We tested these
latencies separately and in combination.

Table I makes clear the time for a small packet to be
sent from the local device (Raspberry Pi) to the server by
calculating the round trip delay. From the data we conclude
that using websocket against TCP introduces negligible ad-
ditional delay(1ms) compared to the delay introduced by
YOLO running at 15 FPS (60ms).

TABLE I

TIME FOR ROUND TRIP WEBSOCKET COMMUNICATION, DATA SIZE
13500 BYTES, TAKING THE AVERAGE OF 2000 ROUND TRIPS

Timing Difference

Sunnyvale to San
Francisco (41.5 mi)

Sunnyvale to New
York (2,937.8 mi)

Websocket

0:00:00.076612

0:00:00.210735

TABLE III
TIME BETWEEN FRAME OF PERSON SHOWING UP AND DETECTION

Time Total Delay Time Total Delay
8:00 AM 0:00:00.562203 6:00 PM 0:00:00.651300
11:00 AM 0:00:00.687919 9:00 PM 0:00:00.756316
3:00 PM 0:00:00.585435 12:00 AM 0:00:00.494050

To time the latency introduced by limited bandwidth, we
encoded a string of length 13500 bytes, which is the average
size of a 480 * 270 byte JPEG image. The delay introduced
by sending this data packet through the network is shown in
Table II.

To time the combined latency of object detection and
network communication, a picture of a person shown in
Fig. ?2(a). is used as a token. First the camera is facing
a black plane where no object is detected in the scene. After
a few seconds the program swaps out the camera feed for
the JPEG picture which is read from memory (counting the
time to recompress the picture into JPEG format) and sent
for detection. This effectively simulates the procedure of
capturing, sending, and detecting a person in the current
scene. The time when YOLO first detects the presence of
a person is recorded. The results from five different times
of day are shown in Table III. While YOLO can run at an
average frame rate of 15 FPS on our machine, the additional
delay time between the picture event occurring on the local
machine and cloud detection is caused by the following
factors: 1) Network Congestion, where the cloud instance
can not process the image frames sent from local devices as
quickly as the local devices can send them, and 2) The video
compression and decompression time taken by OpenCV
on both the cloud instance and local device. Overall, by
offloading the object detection from the local device, less
than half of a second delay is introduced on the original
performance of the object detection algorithm. Equipped
with better GPU enabled cloud instance, the latency can be
reduced even further.

C. Compression Algorithms Evaluation

In order to reduce the bottle-neck of transmission, we tried
a few different compression schemes to reduce the amount
of data that needed to be transmitted.

1) Averaging: Applying an averaging filter to the picture
has the effect of reducing the sharpness of the picture, as
shown in Fig.??(b). The effect on file size and latency
reduction of applying an averaging filter with each pixel

TABLE IV
IMAGE RESOLUTION 320 * 240, FILE SIZE IN BYTES

Compressed Original
(averaging)
Latency 0:00:00.522536 0:00:00.651300
Average File Size 9901 11718
TABLE V

IMAGE RESOLUTION 960 * 540 vs 480 * 270, FILE SIZE IN BYTES

960 * 540 480 * 270
Latency 0:00:00.522536 0:00:00.651300
Average File Size 73198 17740

weighted by 0.04 and averaging every 5 by 5 grids is
shown in Table IV. Even though the image remains the
same resolution after averaging, a blurred image will benefit
more from JPEG compression and will thus take less data to
transmit.

As a side effect of blurring this image we observe a
reduction in accuracy on the our object detector. Our exper-
iment showed that blurring using this kernel will reduce the
mAP (Mean Average Precision) for YOLOv3 from 0.7465
to 0.6426 on the 2007 Pascal VOC dataset.

2) Reduction on Resolution: Reducing the resolution from
960 * 540 to 480 * 270 results in both a file size reduction
and latency reduction as shown in Table V. The affect of this
reduction is shwon in Fig.??(c).

3) Blacking out: The size reduction effect of blacking out
an image is shown in Table VI. As shown in Fig. ??(d),
blacking out the uninteresting part of the image still results
in the correct detection of the object in the current frame,
assuming the location of objects do not change drastically
between frames.

D. Platform Adaption

To test the viability of this approach on other platforms, an
iOS app is developed. Combined with the spacial mapping
capability of the ARKit, the app demonstrates the ability
to identify and label objects in a scene in real time. To
demonstrate the real time object localization capability of
the app, please refer to our short video [27].

Through these experiments, we have demonstrated that
using the GPU-enabled cloud machines to carry out the deep

TABLE VI
IMAGE SIZE ORIGINAL VS BLACKED OUT, FILE SIZE IN BYTES

Original Blacked Out
Latency 0:00:00.651300 0:00:00.651300
Average File Size 18266 14846

learning object detection tasks is a viable, easy to setup, and
easy to adapt approach. A variety of devices and platforms
will be able to implement this architecture and make use of
state of the art deep leaning object detection algorithms in
real time.

VII. CONCLUSION AND FUTURE WORK

In this work, we present a novel architecture to integrate
existing deep learning computer vision algorithm to resource
constraint devices. As opposed to designing a new neural
network that can be run on resource constraint devices, this
approach runs the existing state of the art neural networks
in the cloud and utilizes the wireless networking capabil-
ities of the device to ensure real time performance. Since
the full neural network is run in the cloud, there is little
compromise on accuracy. Also, by utilizing multi-threading
and asynchronous computing, coupled with compression
algorithms for image size reduction, the latency introduced
by streaming data to the cloud is reduced to minimum.
Finally, as demonstrated in our experiment, devices with
camera and WiFi capability can be easily adapted to use our
approach for deep learning computer vision, allowing rapid
prototyping for researchers and developers alike.

In the future, we hope to develop a more robust com-
munication scheme for streaming camera data from the
device to the cloud. Also, we look forward to adapting more
deep learning algorithms to this system, allowing resource
constrained devices to utilize real time deep learning for a
greater range of tasks.

REFERENCES

[1] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017.

[2] Intel Movidius: cutting edge solutions for deploying deep learning
and computer vision algorithms right on-device at ultra-low power.
https://www.movidius.com. Accessed: 2018-06-02.

[3] CEVA NeuPro: a family of ai processors for deep learning at the edge.
https://www.ceva-dsp.com/product/ceva-neupro/. Accessed: 2018-06-
02.

[4] James Kuffner, Cloud Robotics, The Google, Kiva Systems, Steve
Cousins, Willow Garage, Online Robots, Networked Robots, Mechan-
ical Turk, The Cloud, World Wide Web, The Roboearth, and Industrial
Internet. Cloud Robotics and Automation. pages 1-9, 2012.

[5] Guogiang Hu, Wee Peng Tay, and Yonggang Wen. Cloud robotics:
Architecture, challenges and applications. IEEE Network, 26(3):21-
28, 2012.

[6] Ken Goldberg and Ben Kehoe. Cloud robotics and automation: A
survey of related work. Technical Report UCB/EECS-2013-5, EECS
Department, University of California, Berkeley, Jan 2013.

[7] Gajamohan Mohanarajah, Dominique Hunziker, Raffaello D’ Andrea,
and Markus Waibel. Rapyuta: A Cloud Robotics Platform. I[EEE
Transactions on Automation Science and Engineering, 12(2):481-493,
2015.

[8] Nvidia Cloud Gaming: cloud gaming gaming as a service (gaas).
http://www.nvidia.com/object/cloud-gaming.html. Accessed: 2018-06-
02.

[9] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.

Rich feature hierarchies for accurate object detection and semantic

segmentation. CoRR, abs/1311.2524, 2013.

Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You

Only Look Once: Unified, Real-Time Object Detection. 2015.

(10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng Yang Fu, and Alexander C. Berg. SSD: Single shot
multibox detector. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 9905 LNCS:21-37, 2016.

J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders. Selective search for object recognition. [International
Journal of Computer Vision, 104(2):154-171, 2013.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(6):1137-1149, 2017.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection.
CoRR, abs/1506.02640, 2015.

Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger.
CoRR, abs/1612.08242, 2016.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improve-
ment. CoRR, abs/1804.02767, 2018.

Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Flattened
convolutional neural networks for feedforward acceleration. CoRR,
abs/1412.5474, 2014.

Min Wang, Baoyuan Liu, and Hassan Foroosh. Factorized convo-
lutional neural networks. 2017 IEEE International Conference on
Computer Vision Workshops (ICCVW), pages 545-553, 2017.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song
Han, William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360, 2016.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. CoRR, abs/1603.05279, 2016.

Jangwon Lee, Jingya Wang, David J. Crandall, Selma Sabanovic,
and Geoffrey C. Fox. Real-time, cloud-based object detection for
unmanned aerial vehicles. 2017 First IEEE International Conference
on Robotic Computing (IRC), pages 36-43, 2017.

ImageNet: imagenet is an image database organized according to the
wordnet hierarchy (currently only the nouns), in which each node
of the hierarchy is depicted by hundreds and thousands of images.
http://www.image-net.org. Accessed: 2018-06-02.

COCO: coco is a large-scale object detection, segmentation, and
captioning dataset. http://cocodataset.org/. Accessed: 2018-06-02.
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 07-12-June-2015:1-9, 2015.

Cloud Chaser: cloudchaser is a custom built, cloud-based robot
that uses computer vision to target and chase user-specified objects.
https://devpost.com/software/cloudchaser. Accessed: 2018-06-02.
Cloud Chaser iOS: object detection + localization through deep
learning + arkit. https://youtu.be/hB1dj21USTk. Accessed: 2018-06-
02.

